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Synopsis 

In a previous publication,’ a suboptimal technique was developed to  solve the problem of 
producing polymers with prespeded values of the number-average chain length and the polydis- 
persity, through “living” anionic polymerizations carried out in continuous stirred-tank reactors. 
The solution of that problem involved the periodic operation of the monomer solution feed and of 
the initiator solution feed, as well as readjustments in their feedstock concentrations. The present 
work solves the problem directly, without resorting to laborious "optimization-resealing" proce- 
dures. The objective functional considers not only the polymer quality, but also the required 
polymer production. Compared with the previous r d t s , ’  the present solutions are better and 
obtained with less computational effort. The proposed technique may be applicable to  other 
optimal periodic control problems with nonconventional objective functionals. 

INTRODUCTION 

When a “living” anionic polymerization is carried out in a continuous 
stirred-tank reactor (CSTR) operated in the steady-state (SS), then (1) the 
number-average chain length p n  (or the weight-average chain length p,) may 
be altered by adjusting the flow ratio between the monomer solution and the 
initiator solution; and (2) the polymer produced ideally exhibits a Schultz- 
Flory distribution with a fixed polydispemity On (= p,/pn) of 2. 

With respect to the SS operation, the periodic operation (PO) of continuous 
polymerization reactors provides enhanced flexibility in the quality of the 
average polymer produced. The forced feed oscillations of CSTR in which 
living anionic polymerizations are carried out has been previously investigated 
in several publications,’-6 but only References 1 and 5 have considered its 
optimal periodic control problem. In general, this type of control has been 
studied by several authors, from both a theoretica16-14 and an applied view- 

The present work provides new results for the problem proposed in Frontini 
et al.’ In that work, the production of polymers with any prespecified 
number-average chain length and polydisprsity was intended when living 
anionic polymerizations were carried out in CSTR operated under periodic 
forcing of the feed flows. To that effect, a suboptimal objective functional 
related to the average polydispemity was employed. The functional was 
maximized and minimized in order to determine the feasible range of the 

point.16- 21 
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average polydispemity, around the SS value of 2. In principle, polymers with 
any average polydispensity within that range could be produced, by adjust- 
ment of the step of the iterative numerical procedure employed in the 
optimization. Also, both the desired average values of the polydispersity and 
the number-average chain length could be obtained in a doubly iterative 
procedure involving the readjustment of the initial SS value of the flows 
and/or the readjustment of the feedstock concentrations. In the present work, 
an optimal objective functional is utilized to provide the desired product, at  
the required production rate, in a single optimization stage. To this effect, the 
theoretical tools described in Watanabe et al.% are utilized in conjunction 
with an adaptation of the numerical algorithm in the classic paper by Horn 
and Lin? As far as the authors are aware, this is the first application in which 
such a combination of techniques is employed. 

"HE SYSTEM MODEL AND "HE OPTIMAL 
OBJECTIVE FUNCTIONAL 

As in Reference 1, the following state model for a nonterminated anionic 
solution homopolymerization carried out in an isothermal and homogeneous 
CSTR is considered: 

-- + 'dt) A,( t )  + k, [ M( t ) ]  A,( t) (Id) 
V 

dA1(t) - k i  [ I( t ) ]  [ M( t ) ]  - dt 

+kP[M(t)l(2Al(t) + h o w )  (14 
where: 

[I( t)], [M( t ) ]  = concentrations of the initiator solution and the monomer 
solution, respectively, in moi/dm3 

A, = C,jn[3.] (n = 0, 1, and 2), the first three moments of the 
number-chain length distribution [$.I versus j ,  where 3. is 
the living polymer of chain length j 

V = reaction volume, in dm3 
fI(t) ,  fM(t)  = feed flow rates of the initiator solution and the monomer 

ki ,  k, = initiation and propagation constants, respectively, in dm3/ 
solution, respectively, in dm3/h 

g-mol-h 
f = supersQipt indicates feedstock conditions 
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The quality of a polymer obtained under PO is represented by the average 
properties obtained under periodicity conditions of the accumulated effluent 
along a period of oscillation Tp. We shall indicate these properties by an 
asterisk (*). For example, the average moments are 

and therefore, 

Other important properties are the average reagent conversions and the 
polymer production per unit time z. For example, the average monomer 
conversion and the average production (in g/h) may be calculated from 

and 

where W, is the monomer molecular weight in g/g-mol. 
The optimal functional to be minimized can be written, for example, as the 

sum of three terms, corresponding to deviations from their desired values 
(represented by the superscript d )  of p n ,  On, and z, as follows: 

where wl, w,, and w3 are adjustable weights. Note that each term is squared 
(in order to avoid cancellations) and normalized (in order to make the terms 
comparable). Ideally, our aim is finding the periodic feed flows f M (  t) and f I (  t) 
such that the functional of eq. (7) is zero. 
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THE OPTIMAL PERIODIC CONTROL WITH 
NONCONVENTIONAL OBJECTIVE FUNCTIONALS 

In Horn and Lin,' a method for solving the optimal periodic control 
problem is developed for an objective functional j consisting of a time-average 
value over a period of oscillation of a nonlinear scalar function rn, depending 
on the n vector of states x(t) and on the s vector of controls or manipulated 
variables f( t): 

1 
j = -pn[x ( t ) , f ( t ) l  dt 

TP 

where Tp is considered ked. In Frontini et al.,' a suboptimal objective 
functional consisting of the time-average value of the instantaneous poly- 
dispersty was adopted, in order to fit to the general form of eq. (8). Obviously, 
the functional of eq. (7) with the definitions of eqs. (2) and (6) falls into a more 
general class than that of eq. (8) and may be represented as 

where g is a nonlinear scalar function of the r vector, 

and m is an r vector of nonlinear functions. The extremization of J is subject 
to the restrictions imposed by the model represented by eq. (l), which may be 
symbolized as 

where in our case, x(t)  = [ [ l ( t ) ] , [ M ( t ) ] ,  A,(t),  A, ( t ) ,  A,(t)J*: is the state 
vector and f( t) = 1 f r (  t ) ,  f M (  t)JT: is the control vector. The periodicity condi- 
tion 

d o )  = x(Tp) (11) 

must be also verified. 

Hamiltonian: 
In the approach by Watanabe et al.,20 this problem is solved by defining a 

H = pTm + yTa 

where p is a real r vector calculated through 

ag 
a i  P = -  

and y ( t )  is an n vector of periodic functions (called the costates vector), 
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which can be obtained through the differential system 

dY(t) aH 
dt a x  

Y(0) = Y(Tp> 

-- - -  

with 

The problem represented by eqs. (9) through (12) may be numerically solved 
through a gradient technique equivalent to that described in Horn and Lin.‘ 
In our case, this technique, with the modification suggested in Denn,22 is 
employed; that is, the necessary controls are calculated through the iterative 
procedure 

with 

and 

E = diagonal(€,,.. ., c i , .  . . , c S )  (13b) 

Ci 

E i =  

In eq. (13c), ci is an adjustable coefficient for the step length. 
The variational analysis from which the equations are obtained is developed 

in Appendix A. Appendix B provides the expressions of eqs. (9), (12), and (13) 
for the problem under study. 
As explained in Frontini et al.,’ the “best” period of oscillation Tp and the 

initial perturbation to start the iterative procedure may be found by applica- 
tion of the sensitivity analysis developed in Sin% and Bailey.lg The initial 
perturbation must be added to an optimal SS condition. In our particular 
problem, and through appropriate SS designs, it is always possible to obtain 
the desired production and number-average chain length the polydispersity 
will be always 2, however. For this reason, any design with p R  = p$ and 
zs  = zd is an optimal SS. (We use the superscript s to indicate the SS 
condition.) 

In summary, the optimization of a periodic process may be performed as 
follows: 

1. Design an optimal SS operation (in our case based on pLd, and zd). 
2. Choose Tp and the initial control perturbation through the method 

3. Find the solution to the state equation (lo), subject to eq. (11). 
4. Solve the costate equation (12c), subject to eq. (12d). 
5. Improve the control through eq. (13). 
6. Iteratively repeat steps 3-6 until no significant improvement in J is 

suggested in Frontini et al.’ 

obtained. 
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TABLE I 
Optimal SS Conditions 

Raw data ss values 
V = 0.9 dm3 

k ,  = 21.4 dm3/g-mol-h 
kp  = 4284 dm3/g-mol-h 

[zf] = 0.003 g-mo1/dm3 
[Mf]  = 6 g-mol/dm3 

1; = 1,' = 0.5 dm3/h 
W, = 65.12 g/g-mol 

[ z y  = 0.00014~ g-m01/dm3 
[MI' = 0.4819 g-mol/dm3 

Dns = 2 
an' = 1860 
z' = 165 g/h 
q; = 0.90 

qMs = 0.84 
8" = 0.9 h 

TABLE I1 
Characteristics of the Required Polymers 

Polymer A 4.0 1860 170 
Polymer B 1.5 1860 170 

THE SIMULATION RUNS 

Consider, as in Frontini et al.,' the polymerization of isoprene in n-heptane 
with n-butyllithium as initiator at 25 O C. Table I provides the basic raw data 
and the results of a SS operation (0 represents the reactor mean residence 
time). The solution in Table I may be taken as the initial optimal SS when 
the polymers with the characteristics indicated in Table I1 must be produced. 
Also, the straight maximization and minimization of the average polydisper- 
sity will be investigated. In this case, we shall take J = 02, and again the 
optimal SS condition of Table I. The computer programs were written in 
FORTRAN for a VAX 11/78). Owing to the "stiffness" of the state equations, 
one of Gear's integration routines was employed. 

Selection of Tp and of the Initial Perturbation 

Let the initial flow perturbations be sinusoids of small amplitudes of an 
adjustable frequency w = 2?r/TP and of an adjustable phase T. By means of 
the sensitivity analysis due to Sin66 and Bailey,lg as applied in Frontini 
et al.,l one may find the best combination of Tp and T for the optimization 
algorithm. The values of Tp and T providing the maximum negative variation 
of the functional AJ are chosen to minimize J.  Similarly, those values 
providing the maximum positive variation of J are adopted for the maximiza- 
tion of J.  

Let JA and JB be the functional of eq. (7) associated with polymers A and 
B in Table 11, respectively, with the weights w1 = w, = w3 = 1. The sensitiv- 
ity analyses for the functional taken as JA, JB, and 02 are represented in 
Figures la, lb, and lc, respectively. For the different cases under study, the 
adopted combinations of Tp and T are indicated in Table 111. It is interesting 
to note that, irrespective of the functional structure, the results are identical 
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w 

T = -Tp 18 

T=-  Tp/4 
-0.001 , 

-0.002 ; t-T=-Tp/2 
o.oooo2 I 

A Je 
0 -  

-0.00002 ’ 

- o m .  

Fig. 1. Sensitivity analyses for the specification of and T. (a) Production of polymer A. (b) 
Production of polymer B. (c) Extremization of 02. 

TABLE I11 
Selected Combinations of Tp and T for the Different Optimization Cases Considered 

T, Q T 

min JA 0.31 20 Tp/2 
min JB 10.5 0.6 0 
min D,* 10.5 0.6 0 
max D,* 0.31 20 Tp/2 

when an average polydispersity greater than 2 is required, and the same is 
true when an average polydispersity below 2 is specified. This indicates that 
0: is the principal variable affected by Tp and T, the reason perhaps being 
that any desired pz and z may be obtained directly in the SS. The sensitivity 
analysis requires that when 0,” > 2, then Tp -, 00 should be selected. This 
would signify an infinitely large collecting tank-for the reactor effluent, and 
the selected period (T, = 20 h) implies a compromise between the two conflict- 
ing effects. 

The Optimization Results 

Consider first how to obtain polymers A and B of Table 11. The resulting 
optimal periodic profiles are represented in Figure 2, and the average proper- 
ties are indicated in Table IV. For the given set of data, the solution 
corresponding to polymer A may be readily obtained. In the case of polymer 
B and for the original set of data, a solution with a value of J very close to 
zero could not be found, in spite of having investigated with different 
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3 ,  1 

Fig. 2. Optimal profiles for the production of polymer A (-) and for the obtainment of 
polymer B (- - -). 

TABLE IV 
Average Properties Obtained When Polymers A and B Were Fkquired 

[I’l [MI1 0: Cr: Z v? v& @ J 

Production of 
polymer A 0.003 6.0 3.99 1866 169.8 0.85 0.72 0.82 4 X 
Production of 
~0lvmer B 0.003 6.0 1.58 1840 206 0.55 0.80 0.55 0.0078 

combinations of the weights wi. This is consistent with the difficulties previ- 
ously observed in Frontini et al.’ and probably indicates that a solution with 
J = 0 may simply not exist for the given data set. 

Consider now the straightforward maximization and minimization of 02. 
The results may be found in Figure 3, and under Kinetics 1 of Table V. 
Clearly, polymers with any value of 02 between 1.13 and 12.7 could be 
produced with the system under study. The optimal profiles are qualitatively 
equivalent to those obtained in h n t i n i  et al.,’ thus validating the suboptimal 
functional selected in that opportunity. The enhanced flexibility obtained 
here with respect to the maximum value of 0; is mainly determined by the 
change in Tp. (In the paper mentioned, a large Tp could not be used to produce 
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\ 

Fig. 3. Optimal profiles for the maximization of D,* (-) and for the minimization of D,* (- - -). 

TABLE V 
Results of the Extremizations of D,* for the Simulated Example (Kinetics 1) and 

for Other Combinations of the Rate Constants 

TP zs, 2 es,  e 
Q T D,",D,* Pne9P; (g/h) VrS,Vr* VM"?V& 01) 

Kinetics 1 ss - - 2 1860 171 0.903 0.839 0.9 
( k i  = 24.47 and max D,* 20 Tp/2 12.7 1244 86.5 0.656 0.669 1.08 
k =4284) min D,* 0.6 0 1.13 679 161 0.132 0.83 0.097 
A e t i c s  2 ss - - 2 1705 174 0.99 0.853 0.9 
( k i  = 42840 and max 0,' 20 Tp/2 43.8 483 58.4 0.993 0.656 1.1 
kp = 4284) min D,* 0.16 0 1.06 2102 100 1.0 0.007 0.025 
Kinetics 3 ss - - 2 3170 199 0.614 0.9726 0.9 
( k i  = 21.47and max D,* 20 Tp/2 17.5 4122 175 0.442 0.716 0.84 
ks = 42840) min 0,' 1.4 0 1.29 1507 125 0.12 0.97 0.24 
Kmetics 4 ss - - 2 1967 201 0.99 0.983 0.9 
( k i  = 42840 and max D,* 20 Tp/2 43.95 1612 139 0.98 0.8 1.05 
k,, = 42840) min D,* 0.06 -Tp/6 1.04 1.04 0.044 0.54 0.009 0.95 

the largest possible values of 0: because the suboptimal functional did not 
increase under those conditions.) 

In order to determine the feasible ranges of the average polydispersity for 
different combinations of the kinetic constants, 02 was extremized under 
kinetics 2-4 in Table V, with the other parameters remaining unaltered. In all 
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cases, the ranges okrved in 0: are wider than those calculated in Frontini 
et al.’ Note that, with fast initiation and propagation, a useless trivial 
solution (with p: = 1) is obtained when minimizing 0:. 

CONCLUSIONS 

This work reconsiders an optimal periodic control problem previously 
solved suboptimally 4 Frontini et al.’ In that publication, a “classic” objec- 
tive functional was utilized and the periodic policy necessary to produce a 
prespecified polymer quality was calculated by means of ad hoc iterative 
procedures. Here, an optimization technique for non-conventional functionah 
is employed that allows one to solve the problem of producing the desired 
polymer at the required production rate in a straightforward manner, without 
resorting to “special” numerical algorithms. It should be emphasized that the 
proposed method is quite general and could be applied to many other optimal 
periodic control problems. 

Through an adequate SS design, polymers with practically any desired 
average chain length and production are relatively easy to obtain. This is not 
the case with the polydispersity, however, and for this reason 0: is the most 
important optimization variable. For example, selection of the period of 
oscillation and of the initial perturbation seems to depend only on whether an 
average polydispersity above or below 2 is required. 

Under certain design conditions (i.e., for a given combination of the rate 
constants, the reactor volume, the feedstock concentrations, and so on), 
polymers with exactly the prespecified values of the average chain length, the 
polydispersity, and the production can be produced. Otherwise, the optimi- 
zation algorithm will converge to some “best possible” solution, which is a 
compromise between the different requirements. Such compromise may be 
adjusted through the functional weights. Furthermore, the objective func- 
tional could include more terms (e.g., a required monomer conversion), and the 
solution will again be a compromise between potentially conflicting factors. 
Also, the system model could be extended to include higher moments of the 
number chain length distribution. In this way, the polymer quality could be 
more finely specified. 

Experimental validation of the proposed technique and the development of 
a closed-loop adaptive control for the periodic operation= are at present being 
investigated. 

To Prof. I. Watanabe for the clarification of some concepts, to Prof. G. Stephanopoulos and Dr. 
E. Fembdez for the useful discussions; to Dr. J. Weisz for the revision of the manuscript; to 
CONICET and U.N.L. for their financial support. 

APPENDIX A 
Our optimal periodic control problem consists in minimizing the functional 

represented by eq. (9), subject to the constraints imposed by eqs. (10) and (11). 
From eq. (9), the variations of J and j are 
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and 

- 6 x + - S f  dt 
am a t  1 S j  = -i’( 1 am 

T~ ax 

Substituting (A.2) into (A.l) and bearing in mind that 

then, one can write 

am aa aa 
Sx - - 6f) dt 

a t  

and 

Integrating the third term of the integand by parts, one obtains 

Define the Hamiltonian as in eqs. (12a) and (12b). From the periodicity 
condition, we get y(Tp) 6x(Tp) = y(0) Sx(0). Thus, eq. (A.6) may be written 

a t  

Substituting eq. (12c) into eq. (A.7), we find 

By choosing 

then 

1 TpaH S J = - /  -6fdt 
T~ a t  

aH 
a t = - € -  E > O  

a t  

SJ=--/”( 1 aH ) dt 
T p o f =  

(A-9) 

(A.lO) 

will be always negative, thus ensuring the minimization of J. 
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APPENDIX B 
From eqs. (2), (6), and (7) one may write 

The real multipliers defined by eq. (12b) are 

w3 +2-(wMj2 - 2 " ) ~ ~  
(."I2 

From the Hamiltmian, the costatea equations result: 
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Finally, the new controls are obtained through 

C 8H 

C 8H 

with 

+P2Al + PaA2 
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